Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Seasonal migration is highly labile from an evolutionary perspective and known to rapidly evolve in response to selective pressures. However, long‐distance migratory birds rely partially on innate genetic programs and may be constrained in their ability to alter their migratory behavior. We take advantage of recent advances in our ability to genotype historical DNA samples to examine the temporal stability of migratory connections between breeding and nonbreeding populations (i.e. migratory connectivity) and population‐level nonbreeding distributions in the Wilson's warblerCardellina pusilla, a long‐distance migratory songbird. By assigning historical and contemporary samples collected across the nonbreeding range to genetically distinct breeding clusters, we suggest that broad‐scale population‐level nonbreeding distributions within this species have remained largely consistent within Mexico from the mid‐1900s to the present day. These findings support the idea that the nonbreeding distributions of long‐distance migrants may remain stable over long time scales, even in the face of rapid environmental change.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract A prominent challenge for managing migratory species is the development of conservation plans that accommodate spatiotemporally varying distributions throughout the year. Migratory networks are spatially‐explicit models that incorporate migratory assignment and seasonal abundance data to define patterns of connectivity between stages of the annual cycle. These models are particularly useful for widespread application because different types of migratory data can be used to quantify individual and population‐level movement across the annual cycle of migratory species. While there are clear benefits of combining migratory assignment and abundance data for the development of conservation strategies, there is a concurrent need for corresponding user‐friendly software to facilitate the integration of these data for conservation.Here, we presentmignette(migratory network tools ensemble), an R package for developing migratory network models to estimate network connectivity among migratory populations. We demonstrate the functionality ofmignettewith three empirical examples that highlight the use of different types of tracking data for migratory assignment.mignettefacilitates the modelling of migratory networks by providing R functions to: (1) define breeding and nonbreeding nodes, (2) assemble abundance and assignment data and (3) model the migratory network. Additionally,mignetteprovides R functions to visualize modelled migratory networks.With increasing availability of migratory assignment and abundance data,mignetterepresents a valuable tool for developing effective conservation strategies for migratory species.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract Large structural variants in the genome, such as inversions, may play an important role in producing population structure and local adaptation to the environment through suppression of recombination. However, relatively few studies have linked inversions to phenotypic traits that are sexually selected and may play a role in reproductive isolation. Here, we found that geographic differences in the sexually selected plumage of a warbler, the common yellowthroat (Geothlypis trichas), are largely due to differences in the Z (sex) chromosome (males are ZZ), which contains at least one putative inversion spanning 40% (31/77 Mb) of its length. The inversions on the Z chromosome vary dramatically east and west of the Appalachian Mountains, which provides evidence of cryptic population structure within the range of the most widespread eastern subspecies (G. t. trichas). In an eastern (New York) and western (Wisconsin) population of this subspecies, female prefer different male ornaments; larger black facial masks are preferred in Wisconsin and larger yellow breasts are preferred in New York. The putative inversion also contains genes related to vision, which could influence mating preferences. Thus, structural variants on the Z chromosome are associated with geographic differences in male ornaments and female choice, which may provide a mechanism for maintaining different patterns of sexual selection in spite of gene flow between populations of the same subspecies.more » « lessFree, publicly-accessible full text available November 1, 2025
-
Abstract The ability of animals to sync the timing and location of molting (the replacement of hair, skin, exoskeletons or feathers) with peaks in resource availability has important implications for their ecology and evolution. In migratory birds, the timing and location of pre-migratory feather molting, a period when feathers are shed and replaced with newer, more aerodynamic feathers, can vary within and between species. While hypotheses to explain the evolution of intraspecific variation in the timing and location of molt have been proposed, little is known about the genetic basis of this trait or the specific environmental drivers that may result in natural selection for distinct molting phenotypes. Here we take advantage of intraspecific variation in the timing and location of molt in the iconic songbird, the Painted Bunting (Passerina ciris) to investigate the genetic and ecological drivers of distinct molting phenotypes. Specifically, we use genome-wide genetic sequencing in combination with stable isotope analysis to determine population genetic structure and molting phenotype across thirteen breeding sites. We then use genome-wide association analysis (GWAS) to identify a suite of genes associated with molting and pair this with gene-environment association analysis (GEA) to investigate potential environmental drivers of genetic variation in this trait. Associations between genetic variation in molt-linked genes and the environment are further tested via targeted SNP genotyping in 25 additional breeding populations across the range. Together, our integrative analysis suggests that molting is in part regulated by genes linked to feather development and structure (GLI2andCSPG4) and that genetic variation in these genes is associated with seasonal variation in precipitation and aridity. Overall, this work provides important insights into the genetic basis and potential selective forces behind phenotypic variation in what is arguably one of the most important fitness-linked traits in a migratory bird.more » « less
-
Seasonal migration is a dynamic natural phenomenon that allows organisms to exploit favourable habitats across the annual cycle. While the morphological, physiological and behavioural changes associated with migratory behaviour are well characterized, the genetic basis of migration and its link to endogenous biological time-keeping pathways are poorly understood. Historically, genome-wide research has focused on genes of large effect, whereas many genes of small effect may work together to regulate complex traits like migratory behaviour. Here, we explicitly relax stringent outlier detection thresholds and, as a result, discover how multiple biological time-keeping genes are important to migratory timing in an iconic raptor species, the American kestrel ( Falco sparverius ). To validate the role of candidate loci in migratory timing, we genotyped kestrels captured across autumn migration and found significant associations between migratory timing and genetic variation in metabolic and light-input pathway genes that modulate biological clocks ( top1, phlpp1, cpne4 and peak1) . Further, we demonstrate that migrating individuals originated from a single panmictic source population, suggesting the existence of distinct early and late migratory genotypes (i.e. chronotypes). Overall, our results provide empirical support for the existence of a within-population-level polymorphism in genes underlying migratory timing in a diurnally migrating raptor.more » « less
-
Abstract Identifying genetic conservation units (CUs) in threatened species is critical for the preservation of adaptive capacity and evolutionary potential in the face of climate change. However, delineating CUs in highly mobile species remains a challenge due to high rates of gene flow and genetic signatures of isolation by distance. Even when CUs are delineated in highly mobile species, the CUs often lack key biological information about what populations have the most conservation need to guide management decisions. Here we implement a framework for CU identification in the Canada Warbler (Cardellina canadensis), a migratory bird species of conservation concern, and then integrate demographic modelling and genomic offset to guide conservation decisions. We find that patterns of whole genome genetic variation in this highly mobile species are primarily driven by putative adaptive variation. Identification of CUs across the breeding range revealed that Canada Warblers fall into two evolutionarily significant units (ESU), and three putative adaptive units (AUs) in the South, East, and Northwest. Quantification of genomic offset, a metric of genetic changes necessary to maintain current gene–environment relationships, revealed significant spatial variation in climate vulnerability, with the Northwestern AU being identified as the most vulnerable to future climate change. Alternatively, quantification of past population trends within each AU revealed the steepest population declines have occurred within the Eastern AU. Overall, we illustrate that genomics‐informed CUs provide a strong foundation for identifying current and future regional threats that can be used to inform management strategies for a highly mobile species in a rapidly changing world.more » « less
-
Abstract Migration is driven by a combination of environmental and genetic factors, but many questions remain about those drivers. Potential interactions between genetic and environmental variants associated with different migratory phenotypes are rarely the focus of study. We pair low coverage whole genome resequencing with a de novo genome assembly to examine population structure, inbreeding, and the environmental factors associated with genetic differentiation between migratory and resident breeding phenotypes in a species of conservation concern, the western burrowing owl (Athene cunicularia hypugaea). Our analyses reveal a dichotomy in gene flow depending on whether the population is resident or migratory, with the former being genetically structured and the latter exhibiting no signs of structure. Among resident populations, we observed significantly higher genetic differentiation, significant isolation‐by‐distance, and significantly elevated inbreeding. Among migratory breeding groups, on the other hand, we observed lower genetic differentiation, no isolation‐by‐distance, and substantially lower inbreeding. Using genotype–environment association analysis, we find significant evidence for relationships between migratory phenotypes (i.e., migrant versus resident) and environmental variation associated with cold temperatures during the winter and barren, open habitats. In the regions of the genome most differentiated between migrants and residents, we find significant enrichment for genes associated with the metabolism of fats. This may be linked to the increased pressure on migrants to process and store fats more efficiently in preparation for and during migration. Our results provide a significant contribution toward understanding the evolution of migratory behavior and vital insight into ongoing conservation and management efforts for the western burrowing owl.more » « less
-
Abstract Identifying areas of high evolutionary potential is a judicious strategy for developing conservation priorities in the face of environmental change. For wide‐ranging species occupying heterogeneous environments, the evolutionary forces that shape distinct populations can vary spatially. Here, we investigate patterns of genomic variation and genotype–environment associations in the hermit thrush (Catharus guttatus), a North American songbird, at broad (across the breeding range) and narrow spatial scales (at a hybrid zone). We begin by building a genoscape or map of genetic variation across the breeding range and find five distinct genetic clusters within the species, with the greatest variation occurring in the western portion of the range. Genotype–environment association analyses indicate higher allelic turnover in the west than in the east, with measures of temperature surfacing as key predictors of putative adaptive genomic variation rangewide. Since broad patterns detected across a species' range represent the aggregate of many locally adapted populations, we investigate whether our broadscale analysis is consistent with a finer scale analysis. We find that top rangewide temperature‐associated loci vary in their clinal patterns (e.g., steep clines vs. fixed allele frequencies) across a hybrid zone in British Columbia, suggesting that the environmental predictors and the associated candidate loci identified in the rangewide analysis are of variable importance in this particular region. However, two candidate loci exhibit strong concordance with the temperature gradient in British Columbia, suggesting a potential role for temperature‐related barriers to gene flow and/or temperature‐driven ecological selection in maintaining putative local adaptation. This study demonstrates how patterns identified at the broad (macrogeographic) scale can be validated by investigating genotype–environment correlations at the local (microgeographic) scale. Furthermore, our results highlight the importance of considering the spatial distribution of putative adaptive variation when assessing population‐level sensitivity to climate change and other stressors.more » « less
-
Abstract Understanding the geographic linkages among populations across the annual cycle is an essential component for understanding the ecology and evolution of migratory species and for facilitating their effective conservation. While genetic markers have been widely applied to describe migratory connections, the rapid development of new sequencing methods, such as low‐coverage whole genome sequencing (lcWGS), provides new opportunities for improved estimates of migratory connectivity. Here, we use lcWGS to identify fine‐scale population structure in a widespread songbird, the American Redstart (Setophaga ruticilla), and accurately assign individuals to genetically distinct breeding populations. Assignment of individuals from the nonbreeding range reveals population‐specific patterns of varying migratory connectivity. By combining migratory connectivity results with demographic analysis of population abundance and trends, we consider full annual cycle conservation strategies for preserving numbers of individuals and genetic diversity. Notably, we highlight the importance of the Northern Temperate‐Greater Antilles migratory population as containing the largest proportion of individuals in the species. Finally, we highlight valuable considerations for other population assignment studies aimed at using lcWGS. Our results have broad implications for improving our understanding of the ecology and evolution of migratory species through conservation genomics approaches.more » « less
An official website of the United States government
